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ABSTRACT

The challenge of teaching robots to perform
dexterous manipulation, dynamic locomotion, or
whole–body manipulation from a small number of
demonstrations is an important research field that
has attracted interest from across the robotics com-
munity. In this work, we propose a novel approach
by joining the theories of Koopman Operators
and Dynamic Movement Primitives to Learning
from Demonstration. Our approach, named Au-
toencoder Dynamic Mode Decomposition (aDMD),
projects nonlinear dynamical systems into linear
latent spaces such that a solution reproduces the
desired complex motion. Use of an autoencoder in
our approach enables generalizability and scalabil-
ity, while the constraint to a linear system attains
interpretability. Our results are comparable to the
Extended Dynamic Mode Decomposition on the
LASA Handwriting dataset but with training on
only a small fractions of the letters.

I. INTRODUCTION

One facet of robotic learning entails training
a robot to perform a task with a small number
of demonstrations provided from an expert. Sim-
ple Learning from Demonstration (LfD) problems
may be solved by the straightforward application
of function approximation, eg trajectory examples
provided by an operator can be approximated us-
ing splines and replayed as needed. However, this
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approach is suitable only for problems where the
problem is highly constrained: with the robot work-
ing in the same area of the workspace, identical
objects being manipulated across trials, and so on.
As such, this type of technique does not readily
allow changes in the task such as novel trajectories
or variations in timing. Such techniques have found
widespread use in factory automation, where these
constraints can be enforced, but are less satisfactory
in unstructured environments such as agriculture,
disaster response, or domestic service.

Reinforcement Learning (RL) is an obvious tech-
nique to consider for LfD problems. Typically, RL
requires long training times with many examples
but an appropriate design of the architecture, along
with the policy, loss, and/or reward, can result in
significantly improved data efficiency[1], [2], [3].
Notable early work in RL for robotic motor learning
was done by Schaal [4].

An alternative approach entails treating motions
as an output of an underlying dynamical system.
This approach is known Dynamic Movement Prim-
itives (DMP) [5], [6], [7], [8] and provides substan-
tial motivation for the framing of our work. DMPs
formulate the motion generation for an LfD prob-
lem as a basin attractor system, normally designed
by hand, and usually augmented with a learned
forcing term. DMPs have been successfully used
for a variety of LfD problems [9], [10]. A recent
survey of the various mathematical formulations
and adaptations can be found in [11].

In the field of dynamical systems, a burgeoning
area of study is the data-driven identification of
Koopman operators[12], [13], [14]. As opposed
to typical differential equations descriptions of a
dynamical system, which formulate the system as
the evolution of a finite–length state variable, Koop-
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man theory formulates the dynamical system as the
evolution of observables. The set of observables is
the set of all scalar functions on the state, and hence
the Koopman operator K is an infinite dimensional
operator. However, importantly, the Koopman op-
erator is a linear operator. With classic differential
equations we accept nonlinearity in order to work
with finite state vectors but with Koopman theory
we work with a potentially infinite observation
vector in order to have linear dynamics.

Although infinite–dimensional vectors are diffi-
cult to compute with, Koopman analysis suggests
that in some cases, a system of interest can be
either exactly or approximately represented with
finite approximations to the Koopman operator
[12]. Obviously, infinite–dimensional operators are
difficult to store and compute but Koopman analysis
suggests that in some cases, a system of interest
can be either exactly or approximately represented
with finite approximations to the Koopman operator
[12]. This involves identifying a particular set of
functions known as observables on the state of the
system.

Classically, there are basis sets of functions that
are known to be useful in the approximation of the
Koopman operator; these include truncated mono-
mial and polynomial expansions; transcendental
functions; delay functions; and radial basis func-
tions. However, the identification of appropriate ob-
servable functions for specific applications remains
one of the fundamental challenges in Koopman
theory. As a consequence, deep learning frame-
works have attracted interest for approximating
observable functions and the resultant latent space
representations they induce [14].

Here, we join the the theories of DMPs and
Koopman operators in a novel approach to robotic
motion. As a preliminary experiment, we verify the
approach using a handwriting dataset compiled by
the Learning Algorithms and Systems Laboratory
(LASA). We refer to our approach as aDMD in
reference to the well–studied techniques Dynamic
Mode Decomposition (DMD) and Extended Dy-
namic Mode Decomposition (eDMD).

Related Work

Notably, Lian and Jones [15] provide a rigorous
framework for learning both the observation func-
tions and the Koopman operator from data. They
used Gaussian processes, a universal approximator,
to learn observation functions and the resultant
latent space, and demonstrated good results on
the LASA dataset [15]. Lian and Jones make no
claim that the learned observation functions are
suitable for trajectories or tasks that are not in
the training set, however, and demonstrated perfor-
mance on individual characters. As a consequence,
a disadvantage of this approach is the need to
train a separate dynamical model for each character
individually, including the observation functions,
and retrain if new character strokes are desired.
Here, we demonstrate equivalent performance to
Lian and Jones with character stroke models using
a fraction of the character strokes as training data,
without requiring retraining for new characters.

II. BACKGROUND

We assume that there exists an underlying dy-
namical system which dictates the flow of the states
x ∈ S of a system. Regardless of what infor-
mation is realistically obtainable by the designer,
x abstractly contains all the information needed
to describe the system’s instantaneous state. In
the context of discrete systems, we denote these
evolutions xi+1 = f(xi) where f : S → S rep-
resents the underlying dynamics, which in general
are nonlinear.

As mentioned, Koopman theory formulates the
dynamical system as the evolution of observables,
which are scalar-valued functions of the state. This
is typically described via operator theory as

Kg = g ◦ f (1)
⇒ Kg(xi) = g(f(xi)) = g(xi+1) (2)

where g : S → R is an observable function.
A comprehensive overview of Koopman operator
theory is provided in the book by Kutz et al [12].

Dynamic Mode Decomposition (DMD) is one
technique for determining a finite approximation to
the Koopman operator. In DMD, data X , represent-
ing the state vector over time, is captured from the
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real system and the dynamics are approximated us-
ing a least-squares solution. Let xi be the columns
of X ∈ Rn×m. Denote X1 =

[
x1 . . . xn−1

]
and X2 =

[
x2 . . . xn.

]
By assuming that the

system is linear, one can solve the equation X2 ≈
ÃX1 for Ã via a pseudoinverse. This solution
represents a least–squares fit to a linear dynamical
system. eDMD generalizes this technique to the
space of observables such that Y2 ≈ ÃeY1 where
Y1 = g(X1), Y2 = g(X2), and g : Rn×m → Rk×m

represents a set of k observable functions gi :
Rn → R performed on each column of the input.
Choosing an appropriate set of observable functions
is in general a difficult problem. Approximating
these functions using neural networks is one of the
goals of this work.

III. APPROACH

A. Autoencoder Dynamic Mode Decomposition
(aDMD)

Our model is largely adapted from [14], where
the authors employ an autoencoder but use an aux-
iliary network in the identification of a Koopman
operator. In contrast, our approach is to focus solely
on the discovery of a set of observable functions
for representing multiple trajectories as a discrete
spectrum Koopman operator (see Fig. (1)). We
further propose that the set of identified observables
(encoder) is extensible to other “similar” trajecto-
ries not specifically trained on.

The process of aDMD is equivalent to eDMD
by using latent representations from the autoen-
coder as the set of observables as a linear system.
Equation (2) imposes requirements on the latent
representation so that propagating a trajectory from
an initial condition in latent space and using the
decoder to return to delay space, we can compute
the linear, prediction, and reconstruction losses.
Linear loss (7) ensures that the latent space of
the trajectory is indeed linear, as dictated by a
set of linearizing observable functions. Prediction
loss (8) ensures returning to delay space from
latent space corresponds to the correct points in the
trajectory. Reconstruction loss (9) is the standard
loss as dictated by an autoencoder, requiring that
data transformed by the encoder can be recovered

Fig. 1. Diagram of aDMD Architecture, composed of an
encoder Φ and decoder Ψ surrounding an eDMD-computed
recurrent state transition matrix, Km.

with maximal accuracy. Finally, a regularization
term is added to prevent overfitting.

Formally, let Φ : Rnd → Rm and Ψ :
Rm → Rnd represent the encoder and decoder
networks of the autoencoder, respectively. Let K :
Rm → Rm represent the approximated Koop-
man operator, which is calculated using Φ(·) =[
ϕ1(·) ϕ2(·) . . . ϕm(·)

]T
where each ϕj :

Rnd → R is an eDMD observable function. Km

is calculated via a pseudoinverse,

Km = Y2Y
†
1 (3)

where the latent state data matrices Y1 and Y2 are
transformed snapshots of the data as in

Y1 =

Φ(x(d)
1 ) Φ(x

(d)
2 ) . . . Φ(x

(d)
N−1)


(4)

Y2 =

Φ(x(d)
2 ) Φ(x

(d)
3 ) . . . Φ(x

(d)
N )

 . (5)

For a single trajectory, we use the loss function

L = Llin + αLpred + Lrecon + β∥W∥22 (6)

Llin =

N∑
m=1

∥KmΦ(x1)− Φ(xm+1)∥MSE (7)

Lpred =

N∑
m=1

∥Ψ(KmΦ(x1))− xm+1∥MSE (8)

Lrecon =

N∑
i=1

∥Ψ(Φ(xi))− xi∥MSE (9)
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where α and β are hyperparameters. Training over
multiple trajectories, we represent the final loss
function as the sum of the losses for each individual
trajectories.

B. Delay Coordinates

Delay coordinates were introduced into DMD
for discovering dynamics with standing waves [12]
and, recently, linearity and forcing in strongly non-
linear (chaotic) dynamical systems [16]. They are
a simple yet powerful way to compensate for data-
sparse problems and allows the model to learn
without overfitting the task space. In our case, the
employment of delay coordinates can be seen as a
way to “chunk” segments of a trajectory over time
(Fig. (2)).

A coordinate xi at time i is delayed once if
instead of xi we collect xi+1 at time i. We say
that our data is augmented with d delay coordi-
nates when each datapoint is delayed d times, each
time augmenting the state vector with the resulting
delayed state:

X(d) =


x1 x2 . . . xN−d

x2 x3 . . . xN−d+1

...
...

. . .
...

xd+1 xd+2 . . . xN

 (10)

For brevity, we will henceforth refer to the i’th
column of the delayed data X(d) as x

(d)
i =[

xT
i xT

i+1 . . . xT
i+d

]T
. Note that the dimen-

sionality of this vector is nd = n(d + 1) and
the duration (number of columns) of the delayed
trajectory is now Nd = N − d.

C. Eigenmode Filtering

Even when using truncated SVD pseudoinverses,
aDMD occasionally finds an “unstable” eigenmode
— an eigenvalue of K greater than 1. We can filter
out this eigenmode by subtracting it in latent space
before returning to measurement space by deter-
mining the indexing set F whose corresponding
eigenmodes are not unstable,

X̃ = Ψ

 m∑
j=1

P
(k)
j −

∑
i

P
(k)
i

 = Ψ

∑
f∈F

P
(k)
f


(11)

Fig. 2. Visualization of delay and latent space with respect to
measurement space

D. Summary

In summary of our algorithm, we propagate the
initial coordinate using the corresponding Koopman
system:

1) Given the data X for a trajectory, obtain X(d)

for the delay d with which the training data
was augmented.

2) Identify Km using equations (3), (5), and (11)
3) Let x

(d)
1 be the first delay coordinate data-

point in the reconstruction
4) Other points in the reconstruction in delay

coordinates are obtained using the rule

x
(d)
i ≈ Ψ(Ki−1

m · Φ(x(d)
1 ))

5) The full reconstruction in measurement space
is given by the first n rows of the matrix
whose ith column for i ∈ [1, 2, . . . , Nd] is
the reconstructed datapoint x(d)

i

IV. RESULTS

We validate our approach on the LASA Hand-
writing dataset [17], which contains 26 handwritten,
single-stroke “characters”. Data augmentation was
used to improve the robustness and generalizability
of the aDMD. Augmenting the training set with
random noise expands the training region and yields
Koopman systems which can recreate letters even
under perturbations of the initial conditions. This
practice is also sometimes referred to as “motor
babbling” [18].
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aDMD Polynomial eDMD (n = 3) Polynomial eDMD (n = 4)

Average Error per Trajectory (Single Reconstruction)
Prediction Error 0.0242399 0.1961263 0.0292222

Linear Error 0.0681664 1360.897 5407.519
Average Error per Trajectory (Noisy Reconstruction)

Prediction Error 0.0561916 0.5516364 0.0705166
Linear Error 684.5577 4082.349 7291.988

TABLE I
COMPARISON OF ERRORS FOR ADMD AND POLYNOMIAL EDMD.

Single Reconstruction Noisy Reconstructions

aDMD

pDMD (n = 3)

pDMD (n = 4)

TABLE II
RECONSTRUCTION PLOTS COMPARING ADMD AND EDMD. ORIGINAL CHARACTERS ARE IN BLUE. RECONSTRUCTED

TRAINING SET CHARACTERS ARE IN GREEN AND RECONSTRUCTED TEST SET EXAMPLES IN ORANGE.
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We evaluate the average prediction and linear
error for single reconstructions, which take the
datapoint x1 as the first point in the reconstruction,
and the average prediction and linear error for noisy
reconstructions, which take x̃i ∼ N (xi, 0.05

2).
The exact error equations are provided in the ap-
pendix.

Results are shown in Tables (I) and (II). aDMD
reconstruction error is superior to 3–rd and 4–
th order polynomial eDMD. Notable is aDMD’s
inherently compressive architecture. The number
of effective states acted on by the autoencoder
(delay space) is two times as large as the state
in the learned linear system (latent space). Yet,
the results are superior to polynomial eDMD. This
provides evidence that the autoencoder achieves
some level of compression perhaps adaptable to
high–dimensional systems. In comparison, classical
observable selection or dictionary methods (such
as polynomial eDMD) typically explode or become
intractable in high-dimensional systems [19].

V. DISCUSSION & FURTHER WORK

We have shown that every example in the LASA
Handwriting set can be described by observables
identified by aDMD. The autoencoder Φ(·) needs
only one training example per trajectory and gener-
alizes to the space of characters not yet seen. Test
set characters are fit robustly, generally withstand-
ing the same magnitude of perturbations on which
the observables were trained.

We justify the framing of this approach as
inspired by DMPs because, like DMPs, aDMD
formulates the motion generation law for an LfD
task as a dynamical system. Unlike other DMP
approaches, however, aDMD allows us to automat-
ically identify the appropriate dynamics directly
from data, instead of hand–designing an attractor
basin as is usually the case with DMPs.

For future work we intend to test on humanoid
and quadruped locomotion and whole–body manip-
ulation data, with the hypothesis that the move-
ments of particular interest in those systems will
exhibit analogous latent spaces, ultimately com-
pressing and linearizing the dynamics and controls
of interest to engineers. We also intend to investi-

gate applying linear control theory within the linear
latent space, with the intention of robustly handling
system perturbations and external disturbances.

VI. APPENDIX

A. Results Error Calculation

For a given trajectory’s data xi ∈ Rn, errors for
single reconstructions were calculated using

Elin =

N∑
m=1

∥Kmg(x1)− g(xm+1)∥MSE (12)

Epred =

N∑
m=1

∥h(Kmg(x1))− xm+1∥MSE (13)

where g(·) is the set of observables for the method
and h(·) is the mapping back to measurement space
(which includes taking the first n rows for aDMD).

For noisy reconstructions, 100 initial conditions
were perturbed with a random variable sampled
from a truncated multivariate normal distribution
x̃i ∼ N (xi, 0.05

2) and propagated into a trajec-
tory.

En lin =
1

100

100∑
i=1

N∑
m=1

∥Kmg(x̃1)− g(xm+1)∥MSE

(14)

En pred =
1

100

100∑
i=1

N∑
m=1

∥h(Kmg(x̃1))− xm+1∥MSE

(15)

B. Training Details

When training against noise, di ∼ N (0, 0.052)

was added to every state x
(d)
i in every trajectory.

Hyperparameter values used in the results of
this paper are: α = 100, β = 10−12 are used
to tune the prediction and regularization losses,
respectively. m = 20 is the dimension of the
Koopman operator. d = 20 is the number of aug-
mented delay coordinates. f , the activation function
in the autoencoder hidden layers, was the standard
ELU function; hid width=20 and num hidden=2 are
the width and number of the autoencoder hidden
layers, respectively. The model was trained using
the Adam optimizer as implemented in the Julia
programming language and Flux.jl library [20].
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